Laboratory of numerical simulations

The laboratory focuses on research, development and testing of numerically solved mathematical models in the field of energy engineering. Within the laboratory, we focus on modelling processes combining fluid flow, thermodynamic and mechanical processes, streamlining computational times, topological optimisations, statistical modelling and artificial intelligence. We perform both evaluations and designs of new systems. The laboratory includes a number of simulation software and computer equipment.

The laboratory of numerical simulations focuses on research in the field of mathematical modelling in energy engineering, especially combustion, heat transfer and predictive control.

The critical facility consists of a computer workstation and a number of simulation tools covering the demands of extensive and numerically demanding simulations.

Together with paid software, we also use OpenSource libraries for very delicate manipulations with computational algorithms, which allow us to create optimised routines with a high degree of automation without the need to purchase expensive software.

One of the essential aspects of our work is a good background in so-called scientific programming. For this purpose, we use modern programming languages such as Matlab, Python, Julia, Modelica (the last three are freely available).

Using the so-called declarative component-oriented programming, we can create easy-to-use libraries with a graphical interface, where the model is built on the principle of drag-and-drop and subsequent connection of individual components (e.g., exchangers, pumps, etc.).

We offer

  • Modelling of thermofluid processes in components of power plants.
  • Modelling of combustion processes.
  • Topological optimisations of exchangers and other components in energy engineering.
  • Modelling of separation technologies for capture of solids.
  • Modelling of the spread of pollutants in the ground-level atmosphere and their dispersion.

Instrumentation

Many software, programming languages and computer stations are used in research and development:

  • STAR CCM+
  • ANSYS
  • COMSOL
  • FeniCS a FeniCS Adjoint
  • Matlab
  • Julia
  • Python
  • Modelica (OpenModelica Editor pro GUI)
  • Workstation Xeon s 32 CPU, 90 GB RAM 2GB GP-GPU with 192 CUDA cores,
  • Workstation Supermicro s 80 CPU, 196 GB RAM and 4GB GP-GPU with 640 CUDA cores
  • Computer Cluster THOR

Selected implemented projects

  • Computational simulations for effective low-emission energy engineering, provider: Ministry of Education, Youth and Sports, participant: Brno University of Technology/Faculty of Mechanical Engineering, realised: 2018 – 2022
  • National Centre for Energy, provider: Technologická agentura ČR - Národní centra kompetence 1, participant: VSB - Technical University of Ostrava, realised: 2019 - 2022
  • Quantification of air pollution and the resulting health risks in small settlements of the Czech Republic and system of solutions, provider: TA0 - Technology Agency of the Czech Republic, participant: Transport Research Centre (CDV), realised: 2012 – 2015
  • Transport, transformation and distribution of aeroallergens in urban micro and intermediate scale, provider: Ministry of Education, Youth and Sports, participant: Brno University of Technology/Faculty of Mechanical Engineering, realised: 2008 - 2011

Selected publications and results

  • KUDELA, L.; ŠPILÁČEK, M.; POSPÍŠIL, J. Multicomponent numerical model for heat pump control with low-temperature heat storage: A benchmark in the conditions of Central Europe. Journal of Building Engineering, 2023, č. 66, ISSN: 2352-7102.
  • KUDELA, L.; ŠPILÁČEK, M.; POSPÍŠIL, J. Influence of control strategy on seasonal coefficient of performance for a heat pump with low-temperature heat storage in the geographical conditions of Central Europe. Energy, 2021, č. 234, s. 121276-121276. ISSN: 0360-5442.
  • KRACÍK, P.; KUDELA, L. Optimizing the operation of steam turbines when the temperature of the heating medium is reduced. Brno: Brno University of Technology, Energy Institute, 2021. pp. 1-27.
  • KRACÍK, P.; KUDELA, L.; FIEDLER, J. Optimization of steam turbine operation. Brno: Brno University of Technology, Energy Institute, 2020. pp. 1-43.
  • KUDELA, Libor, Radomir CHYLEK a Jiri POSPISIL. Performant and Simple Numerical Modeling of District Heating Pipes with Heat Accumulation. Energies [online]. 2019, 12(4), 633. ISSN 1996-1073. Dostupné z: doi:10.3390/en12040633
  • POSPÍŠIL, J.; JÍCHA, M. Numerical modelling of transient dispersion of air pollution in perpendicular urban street intersection with detail inclusion of traffic dynamics. International journal of environment and pollution, 2019, vol. 65, no. 1/2/3, p. 71-83. ISSN: 0957-4352.
  • CHÝLEK, R.; ŠNAJDÁREK, L.; POSPÍŠIL, J. Vortex Tube: A Comparison of Experimental and CFD Analysis Featuring Different RANS Models. MATEC Web of Conferences., 2018. p. 1-12. ISSN: 2261-236X.
  • LISÝ, M.; POSPÍŠIL, J.; ŠTELCL, O.; ŠPILÁČEK, M. Optimization of Secondary Air Distribution in Biomass Boiler by CFD Analysis. Applied Mechanics and Materials, 2016, vol. 832, no. 1, p. 231-237. ISSN: 1662-7482.
  • POSPÍŠIL, J.; LISÝ, M.; ŠPILÁČEK, M. OPTIMALIZATION OF AFTERBURNER CHANNEL IN BIOMASS BOILER USING CFD ANALYSIS. Acta Polytechnica, 2016, vol. 56, no. 5, p. 379-387. ISSN: 1210-2709.
  • POSPÍŠIL, J.; ŠPILÁČEK, M.; LISÝ, M. Air Pollution Dispersion in Segments of Urban Areas. WSEAS Journal Transactions on Environment and Development, 2015, vol. 11, no. 2015, p. 237-245. ISSN: 1790-5079.

Selected Master’s and Bachelor’s theses

In the implementation of research and development activities, we try to cooperate with Bachelor’s and Master’s degree students, where the result of cooperation are quality diploma theses. When working on their theses, students have the opportunity to use the facilities and equipment of the laboratory, to participate in the implementation of research projects and to gain a range of practical knowledge:

  • CHÝLEK, R. Vírová trubice. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2017. 86 s. Vedoucí diplomové práce doc. Ing. Jiří Pospíšil, Ph.D.
  • FILIP, P. CFD simulace proudění páry v neregulovaném odběru parní turbíny. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2017. 80 s. Vedoucí diplomové práce doc. Ing. Jan Fiedler, Dr.
  • DUBNICKÝ, Ladislav. Aerodynamika axiálních větrných turbín. Brno, 2019. 103 s. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/112990. Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Energetický ústav. Vedoucí práce Jiří Škorpík.
  • KUDELA, L. Aerodynamický výpočet vzduchové části parního kotle. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2017. 57 s. Vedoucí diplomové práce Ing. Martin Lisý, Ph.D.
  • NYTRA, Petr. Návrh úprav a rozvoje tepelné sítě v systému centrálního zásobování teplem.Brno, 2019. Dostupné také z:https://www.vutbr.cz/studenti/zav-prace/detail/117489. Bakalářská práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Energetický ústav. Vedoucí práce Ing. Libor Kudela.

Contact

prof. Ing. Jiří Pospíšil, Ph.D.
Energy Institute, FME BUT
e-mail: pospisil.j@fme.vutbr.cz
tel.: +420 541 142 581

Ing. Libor Kudela, Ph.D.
Energy Institute, FME BUT
e-mail: Libor.Kudela@vutbr.cz
tel.: +420 541 142 581